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Summary

� The impact of increases in drought frequency on the Amazon forest’s composition, struc-

ture and functioning remain uncertain. We used a process- and individual-based ecosystem

model (ED2) to quantify the forest’s vulnerability to increased drought recurrence.
� We generated meteorologically realistic, drier-than-observed rainfall scenarios for two

Amazon forest sites, Paracou (wetter) and Tapaj�os (drier), to evaluate the impacts of more

frequent droughts on forest biomass, structure and composition.
� The wet site was insensitive to the tested scenarios, whereas at the dry site biomass declined

when average rainfall reduction exceeded 15%, due to high mortality of large-sized ever-

green trees. Biomass losses persisted when year-long drought recurrence was shorter than 2–
7 yr, depending upon soil texture and leaf phenology.
� From the site-level scenario results, we developed regionally applicable metrics to quantify

the Amazon forest’s climatological proximity to rainfall regimes likely to cause biomass loss

> 20% in 50 yr according to ED2 predictions. Nearly 25% (1.8 million km2) of the Amazon

forests could experience frequent droughts and biomass loss if mean annual rainfall or interan-

nual variability changed by 2r. At least 10% of the high-emission climate projections (CMIP5/

RCP8.5 models) predict critically dry regimes over 25% of the Amazon forest area by 2100.

Introduction

The Amazon forest is the largest tropical rain forest in the world,
storing c. 40% of the global biomass of tropical forests (Malhi
et al., 2006; Saatchi et al., 2007, 2011). Research suggests that
parts of the Amazon may be susceptible to biome shifts, biodiver-
sity loss and depletion of carbon stores because of changes in cli-
mate and climate variability (e.g. Nobre & Borma, 2009;
Marengo et al., 2011; Davidson et al., 2012; Anad�on et al., 2014;
Duffy et al., 2015; Boit et al., 2016). Rainfall predictions for the
region’s 21st century climate are uncertain, but results from mul-
tiple model predictions indicate stronger and longer dry seasons,
particularly in Southern and Eastern Amazonia (Malhi et al.,
2008; Fu et al., 2013; IPCC, 2014; Boisier et al., 2015), and
increased recurrence of droughts (Duffy et al., 2015), such as the
widespread and intense Amazon droughts observed in 2005,
2010 and 2015–2016 (Marengo et al., 2008; Phillips et al., 2009;

Lewis et al., 2011; Jim�enez-Mu~noz et al., 2016; Erfanian et al.,
2017).

Terrestrial biosphere models suggest that CO2 fertilization
may reduce the die-back risk in the Amazon (e.g. Lapola et al.,
2009; Salazar & Nobre, 2010; Cox et al., 2013; Huntingford
et al., 2013; Zhang et al., 2015). However, the magnitude of the
CO2 fertilization effect is uncertain for two reasons. First, there is
no direct observational or experimental evidence on the existence,
magnitude and duration. Second, even less is known about
changes in ecosystem water-use efficiency, photosynthetic capac-
ity, and the effect of droughts on carbon uptake under elevated
CO2 (Rammig et al., 2010), which may mean that the Amazon’s
vulnerability to droughts in warmer climates and high CO2 may
be over- or underestimated (Allen et al., 2015; McDowell et al.,
2018). Additionally, future climate projections for the Amazon
predicted by models participating in Phase 5 of the Climate
Model Intercomparison Project (CMIP5) (Taylor et al., 2012)
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show great discrepancies because of the challenges to represent
spatial distribution and seasonality in the Amazon (e.g. Joetzjer
et al., 2013; Yin et al., 2013). Consequently, assessing the
resilience, acclimation or susceptibility of the Amazon to changes
in drought frequency is critical to understanding the current and
future dynamics of the region’s ecosystem.

Under high annual precipitation, above 2000 mm, and low-
severity dry seasons (water deficit below 350 mm), water does not
significantly limit productivity in tropical forests (Nemani et al.,
2003; Zelazowski et al., 2011; Guan et al., 2015; Ahlstr€om et al.,
2017a). Eastern and Southern Amazon forests, which regularly
experience multiple-month dry seasons (Davidson et al., 2012),
either show no seasonality or show increases in gross primary pro-
ductivity (GPP) during the dry season (Hutyra et al., 2007; Bonal
et al., 2008; Saleska et al., 2009; Restrepo-Coupe et al., 2013).
However, results from natural droughts and drought experiments
indicate that the Amazon forest is sensitive to changes in rainfall:
mortality rates on forest plots increased after the 2005 and 2010
droughts (Phillips et al., 2009; Feldpausch et al., 2016), and net
biomass accumulation, GPP and autotrophic respiration
decreased during the 2010 drought (Doughty et al., 2015; Feld-
pausch et al., 2016). Furthermore, in two rain-exclusion experi-
ments carried out in the Eastern Amazon, mortality – most likely
caused by hydraulic failure – increased significantly after 3 yr of
drought, particularly among larger trees (Nepstad et al., 2007; da
Costa et al., 2010; Meir et al., 2015; Rowland et al., 2015). How-
ever, rain-out experiments only test the effects of a single change
in soil moisture input, whereas real droughts have variable sever-
ity and also affect temperature, vapor pressure deficit, intercepted
water and incoming radiation (Allen et al., 2015; Bonal et al.,
2016).

Dynamic global vegetation models (DGVMs) have been
employed to understand the Amazon forest’s response to chang-
ing climate (e.g. Senna et al., 2009; Galbraith et al., 2010; Good
et al., 2013; Boulton et al., 2017). However, most DGVM stud-
ies represent Amazon ecosystems as a single plant functional type
(Moorcroft, 2003; Purves & Pacala, 2008; Evans, 2012). By con-
trast, observations suggest that forest responses to droughts
emerge from responses of individual plant function and demo-
graphic performance (Bonal et al., 2016), and there is evidence of
significant differences in drought-induced mortality between gen-
era, life form and size (Nepstad et al., 2007; da Costa et al., 2010;
Esquivel-Muelbert et al., 2017).

In this study, we investigate the resilience of different areas of
the Amazon forest to changes in the region’s rainfall regimes,
with focus on the recurrence of extreme drought events using a
process- and individual-based terrestrial biosphere model, the
Ecosystem Demography Model version 2 (ED2; Medvigy et al.,
2009). ED2 has been shown to successfully represent the spatial
variability of forest structure and dynamics, the timing of
biomass loss due to droughts, and the forest’s response to dry sea-
son length (Powell et al., 2013; Zhang et al., 2015; Levine et al.,
2016). ED2 simulations are used to explore the abiotic and biotic
determinants of Amazon ecosystem responses to drought, exam-
ining the impacts of drought severity, soil texture and plant traits.
In the first part of the analysis we investigate the predicted

ecosystem responses to changes in rainfall regime at a wetter trop-
ical forest site in French Guiana (Paracou) and a drier tropical
forest in Brazil (Tapaj�os) for which 40-yr-long time-series of rain-
fall measurements were available. In the second part, we draw
upon this analysis to identify those areas of the Amazon that are
most and least sensitive to changes in drought recurrence, by esti-
mating how much the frequency distribution of annual rainfall
would need to change before the ecosystem experiences signifi-
cant tree mortality and biomass loss, and the likelihood that such
changes will occur by the end of the 21st century.

Materials and Methods

Overview of study sites

In order to understand the relationship between drought occur-
rence and resulting changes in structure and composition, we
examined predictions for two old-growth, evergreen broadleaf
forest sites located at the wet and dry end-points of the precipita-
tion gradient across the Amazon (Fig. 1). We selected these two
focal sites because both areas had decade-long, high-frequency
measurements of meteorological variables, and forest inventory
measurements of tree growth and mortality rates (see Supporting
Information Notes S1 for description of the site measurements).
Long-term time series allowed us to generate realistic meteorolog-
ical drivers that characterize their day-to-day variability, whose
role in modulating the ecosystem dynamics has been demon-
strated previously (Medvigy et al., 2010).

The wet site is the Guyaflux tower (GYF) located at the Para-
cou Field Station, French Guiana (5°170N; 52°550W), a site with
a closed-canopy forest with mean canopy height of 35 m (Bonal
et al., 2008). Annual rainfall at GYF averages 3050 mm, with a
4-month long dry season from August to November (Gourlet-
Fleury et al., 2004). Both deep, well-drained soils, and soils with
impeding layers are found in the area (Epron et al., 2006).

The dry site is in the Tapaj�os National Forest (TNF), Brazil
(2°510S; 54°580W). This evergreen forest has a closed canopy

Fig. 1 Mean annual rainfall in tropical South America (1998–2015).
Annual averages were obtained from the Tropical Rainfall Measurement
Mission (TRMM), product 3B43 (Liu et al., 2012). The thick black contour
is the extent of the Amazon ecoregion, the thick gray contour is the extent
of the Brazilian Legal Amazon and thin lines are the political boundaries.
The locations of the two focal study sites (GYF, Guyaflux; TNF, Tapaj�os)
are also shown.
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with mean tree height of 40 m (Saleska et al., 2003). Mean
annual rainfall is 1900 mm, with a 5-month-long dry season
from mid-July until mid-December (da Rocha et al., 2009); rain-
fall shows high spatial variability depending on the distance to
rivers and topography (Fitzjarrald et al., 2008). Soils at TNF
show no impeding layers until at least 12 m belowground (Nep-
stad et al., 2007).

Ecosystem Demography Model, version 2

Like its predecessor, the Ecosystem Demography Model (ED)
(Moorcroft et al., 2001), in version 2 (ED2) the aboveground
ecosystem is heterogeneous, characterized by a hierarchical
structure that represents the horizontal and vertical hetero-
geneity of canopy structure and composition. The ecosystem
within each area of interest (either a site, or a climatological
grid cell) is represented using a set of size- and age-structured
partial differential equations that represent the dynamics of a
vertically and horizontally heterogeneous plant canopy com-
prising several different plant functional types (PFTs) (eqns
2.1–2.4 of Medvigy & Moorcroft, 2012). The most up-to-
date model version (Knox, 2012; Longo, 2014) incorporates
comprehensive biophysical and biogeochemical modules that
solve the coupled energy, water and carbon budgets of the
plants within the canopy at sub-daily scale and thus it
accounts for important effects of day-to-day and within-day
variability (Medvigy et al., 2010). Although nutrient availabil-
ity, particularly phosphorus (P), is also an important driver of
tropical forest productivity (Santiago & Goldstein, 2016;
Yang et al. 2016), this version of ED2 does not include pro-
cess-based nitrogen (N) and P cycles. Detailed descriptions of
the model formulation can be found in Medvigy et al. (2009),
Knox (2012) and Longo (2014). A summary of the key
aspects of the model for this study can be found in the Notes
S2.

The ability of the ED2 model to characterize the long-term
dynamics of Amazonian forests has been demonstrated previously
(see Fig. S1; Notes S3; Powell et al., 2013; Longo, 2014; Zhang
et al., 2015; Levine et al., 2016). In addition, we present the most
relevant model assessments based on eddy covariance fluxes
(Fig. S2; Notes S3) and inventories from the study sites (Fig. S3;
Notes S3). Importantly, the seasonal cycle of available water sim-
ulated by ED2 also showed good agreement with field measure-
ments at both sites, although the model tends to overestimate
available water during the wet season at TNF and all year at GYF
(Fig. S2e,f; Notes S3).

Rainfall regime scenarios and simulation design

In order to describe the current rainfall regimes, we used his-
torical rainfall data from conventional weather stations near
the study sites that have reported daily rainfall since at least
1972: Cayenne (WMO-81405), located 80 km east of GYF,
and Belterra (WMO-82246), located 25 km north of TNF.
The probability distribution of annual rainfall (P, mm yr�1)
at each site was characterized by a skew-normal distribution

pSN(P|ξP;xP;aP) (Azzalini, 2005), whose location (ξP), scale
(xP) and shape (aP) parameters govern the mean (lP), stan-
dard deviation (rP) and skewness (cP) of the rainfall distribu-
tion (Fig. 2a; Notes S4). The historical rainfall data were used
to develop a series of regimes with higher probability of
extreme droughts. Each rainfall scenario is defined by a
parameter S whose values (0, �0.2, �0.4, . . ., �1.6) indicate
the change in the location parameter in units of the scale
parameter (i.e. ξS = ξP� S�xP). Because neither site showed
any statistically significant autocorrelation in annual rainfall
(Fig. S4), the rainfall regime scenarios were created by ran-
domly sampling, with replacement, complete years taken from
the historical datasets, using altered distribution functions
pSN(P|ξS;xP;aP) (Fig. 2b). Simulations under scenario S = 0
use parameters of the present-day rainfall regimes plus a sim-
ulation using the observed rainfall time series. Note that
because we only sampled years from historical records, even
the driest scenario at GYF was still rainier than the current
climate at TNF (Fig. 2c,d). Nonetheless, through this proce-
dure, the series of scenarios reflect a range of drier climate
regimes while maintaining patterns of intra- and inter-annual
variability rainfall within each scenario. Unless otherwise
noted, simulations were carried out with atmospheric CO2

concentration typical of the early 21st century (378 ppm).
In order to account for the range of effects of soil hydraulic

properties on forest ecosystem response to drier regimes, and the
uncertainties associated with the representation of hydraulic
properties in ED2, we selected five soil texture classes that repre-
sent soils commonly found in the Amazon (Notes S5): clayey
sand (CSa), sandy clay loam (SaCL), clay loam (CL), loamy sand
(LSa) and clay (C).

Leaf phenological information was not available for all species
occurring at the two sites, and thus simulations were conducted
under the assumption that the plant community was either
entirely evergreen or entirely drought-deciduous. Additional
parameters and settings were kept constant for all simulations
(Table S1). The combination of nine scenarios of changed rain-
fall patterns, 16 realizations of each scenario, five types of soil tex-
ture and two different leaf phenology configurations yielded
1440 simulations for each of the two sites. Each simulation was
carried out for 60 yr, with the first forest inventory at each site
(2004 at GYF and 1999 at TNF) being used to provide initial
conditions for the model.

Drought and rainfall regime metrics

As will be shown in the Results section, the ED2 simulations for
GYF and TNF exhibited a characteristic relationship between the
recurrence of extreme droughts and biomass loss. From this rela-
tionship, we quantified, for different parts of the Amazon, the cli-
matological proximity of the current rainfall regime to critically
dry regimes that, according to ED2 predictions, would lead to
sustained biomass losses, and the risk that such regime could be
reached by year 2100.

We represented the relationship between the rate of biomass
change (DAGB) and the return interval of extreme droughts (sD1)
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with hyperbolic curves:

ðDAGB � D0ÞsbD1 ¼ a (1)

where (D0; a; b) are coefficients that were fitted using a nonlinear
robust estimator (Rousseeuw et al., 2015). We defined extreme
(year-long) droughts to be periods of water-deficit conditions that
lasted at least 1 yr. The water-deficit calculations used actual
evapotranspiration (ET) predicted by ED2, which accounts for
the spatial and temporal variation in response to temperature,
vapor pressure deficit, the canopy’s leaf area index and the canopy
response to levels of water stress.

We developed two metrics associated with one aspect of the
forest’s resilience, namely the precariousness (Folke et al., 2004),
defined in this manuscript as the climatological proximity of the
current rainfall regime to critically dry rainfall regimes that would
cause significant biomass loss. First, we characterized current
regional rainfall regimes using a skew-normal distribution, based
on precipitation data from six long-term, gridded datasets
(Table 1; Fig. S5). We then used the fitted curves (Eqn 1) to
define the ED2-based critical return interval of year-long
droughts (sc). The threshold sc was set as the point of the fitted
curve associated with 20% loss of aboveground biomass in 50 yr,

because at this point model simulations predict rapid decay in
biomass with relatively small changes in the return interval of
year-long droughts (see the Results section). Finally, we quanti-
fied precariousness either in terms of reduction of the mean
annual rainfall (dl), or increase of the standard deviation of the
annual rainfall (dr) relative to present-day rainfall regime (Fig. 3)
that causes the return interval of year-long droughts to be sc (crit-
ically dry rainfall regime):

dl ¼ min 0;
lP � lc

rP

� �
; pSN P � Pc jlc ;rP ; cPð Þ ¼ 1

sc
(2)

dr ¼ min 0;
rc � rP

rP

� �
; pSNðP � Pc jlP ;rc ; cP Þ ¼

1

sc
(3)

(pSN, the skew-normal probability distribution function given the
mean (lP), standard deviation (rP) and skewness (cP) (Notes
S3); lc and rc, critical statistics that make the mean return inter-
val of year-long droughts equal to sc while keeping the other
statistics the same). The precariousness metrics were calculated
for each rainfall dataset and combined using a weighted average
that accounts for their accuracy and time span (Notes S6; Figs
S5, S6; Table S2). For both metrics, zero means that the current

(a) (b)

(d)(c)

Fig. 2 Overview of the rainfall regime change scenarios. (a, b) Histogram of annual rainfall for site TNF for (a) the present-day rainfall regime and (b) one
example of shifted rainfall regime scenario (S =�0.6). Black curves are the fitted skew-normal distribution of (a) original time series and (b) drier rainfall
regime. Gray curve in (b) is the present-day rainfall regime, shown for reference. Numbered boxes are the last two digits of the (a) observed years and (b)
observed years that were selected for the drier scenario, colored by total annual rainfall. (c, d) Box-and-whisker plot for annual rainfall for tested rainfall
regimes. Distribution of annual rainfall for each tested scenario (parameter S that controls probability of selecting dry years) for sites (c) Guyaflux (GYF) and
(d) Tapaj�os (TNF). Boxes span through the interquartile range, whiskers extend to 1.5 times the interquartile range, and horizontal lines inside boxes
correspond to the median.
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drought recurrence is shorter than sc (high precariousness),
whereas higher values indicate that the current rainfall regime is
further away from the ED2-based criticially dry regime (low pre-
cariousness).

In order to explore the risk of Amazonian forest’s reaching the
critically dry regime predicted by ED2 by the end of the 21st cen-
tury, we obtained the output of 40 climate models of the Phase 5
of the Coupled Model Intercomparison Project (CMIP5, Taylor
et al., 2012). For each climate model, we selected one ensemble
member, reprojected all models to a 1-degree grid, and used the
last 40 yr of 21st century simulations under the RCP8.5 (high-
emission) scenario (Table S3). Most CMIP5 models show signifi-
cant precipitation biases relative to observations in the Amazon
during the historical period (e.g. Joetzjer et al., 2013); therefore,
we applied a quantile mapping bias correction that preserves the
relative changes in precipitation between the historical period
and future scenarios (method QDM from Cannon et al., 2015).
We then fitted skew-normal distributions to their annual rainfall
predictions for the late 21st century and computed the return
interval of year-long droughts for each model m, and then
obtained the fraction of models (fRCP8.5) that predicted sm < sc at
each grid cell. Areas with higher fraction (fRCP8.5) indicate higher
agreement among climate predictions that the rainfall regime is
likely to exceed the predicted threshold of critically dry regime by
year 2100. The source code for the ED2 model, information on
the input data and the rainfall regime scenario scripts are
available in Notes S7.

Results

Site-level simulations

The simulated shifts in rainfall regimes resulted in markedly dif-
ferent ecosystem responses at GYF and TNF. At GYF, the mean
aboveground biomass (AGB) differed by < 3% for all realizations
under the different rainfall regimes, soil texture types and leaf
phenology schemes (Fig. 4a,b). By contrast, at TNF, drier scenar-
ios yielded considerable biomass loss (Fig. 4c,d). The point at
which average AGB became significantly lower than the control
scenarios varied depending on soil texture: for clayey soils, mean
AGB decreased by > 15% at S =�0.8 (a 20% reduction in mean
rainfall), whereas for sandy soils, mean AGB decreased by c. 5%,
indicating that simulations with sandy soils showed greater

resistance to changes in AGB compared to those with clayey soils
(Fig. 4c,d). Biomass losses also were influenced by canopy phe-
nology: under similar rainfall regimes, losses were more signifi-
cant in evergreen communities (Fig. 4c) than in drought-
deciduous counterparts (Fig. 4d). The predicted response to drier
rainfall regimes was not restricted to changes in biomass: evapo-
transpiration, an important aspect of ecosystem function, also
showed changes that were similar to the results for AGB. At GYF
the model predicted minor (< 2%) increases of evapotranspira-
tion under drier regimes (Fig. S7a,b), whereas at TNF evapotran-
spiration decreased between 12% (loamy sand, drought
deciduous; Fig. S7d) and 16% (clay, evergreen; Fig. S7c) at sce-
nario S =�1.6 (39% less rainfall).

Forests affected by droughts recovered much of their original
biomass and structure during periods with sufficient rainfall (e.g.
Fig. S8), as long as the return interval of year-long droughts (sD1)
did not drop below 1.5–7 yr (Fig. 5a,b). As a reference, the return
interval of year-long droughts, estimated from the meteorological
data (1972–2011), is near 20 yr at TNF and over 200 years at
GYF.

From the fitted hyperbolic curves (Eqn 1; coefficients shown
in Table 2), we defined the critical return intervals (sc) and criti-
cal rates of biomass change (Dc) to be the points on the fitted
curve where the rate of aboveground biomass loss would be
equivalent to 20% loss over a 50-yr period. This definition was
chosen because it corresponds to the point at which aboveground
biomass declines rapidly with further reduction in the return
interval (Fig. 5). The critical return interval values (Table 2) were
used to define the climatological proximity measures, dl and dr
(Eqns 2, 3).

At GYF, the average basal area in the driest scenarios was 1–
3% higher than the control for most size classes and plant func-
tional types (PFTs) (Fig. 6a,b) due to sunnier conditions, and
both growth and mortality rates remained similar for all scenarios
(Figs S11a,b, S12a,b). By contrast, the forest structure for the dri-
est scenarios at TNF differed substantially from the control: in
the evergreen simulations (Fig. 6c), early-successional trees went
extinct in most realizations under the S =�1.4 and S =�1.6 sce-
narios (35–39% reduction in mean rainfall, respectively).
Extreme loss of early-successional trees was partially compensated
for by the increased abundance of mid-successional individuals,
whose basal area in the driest scenarios were higher by 165% in
small and mid-size classes (DBH < 35 cm). Late successional trees

Table 1 Gridded rainfall datasets used to characterize present-day rainfall regimes

Dataset Name Resolutiona Periodb Reference

PGMF Princeton University Global Meteorological Forcing 1.0 1969–2008 Sheffield et al. (2006)
UDel-3.01 University of Delaware 0.5 1969–2008 Matsuura &Willmott (2012)
GPCC-6.0 Global Precipitation Climatology Centre 1.0 1969–2008 Schneider et al. (2014)
PREC-L NOAA’s Precipitation Reconstruction over Land 1.0 1969–2008 Chen et al. (2002)
GPCP-2.2 Global Precipitation Climate Project 2.5 1979–2012 Huffman et al. (2009)
TRMM/3B43-7.0 NASA Tropical Rainfall Measurement Mission 0.25 1998–2012 Liu et al. (2012)

aNative resolution in degrees. All datasets were reprojected to 1° resolution grids.
bTime period was restricted to a maximum of 40 yr to be consistent with the site-level simulations (1969–2012). Because GPCC-2.2 and TRMM/3B43-7.0
had shorter time series, we used all available years until 2012.
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were lost in all size classes regardless of their leaf phenology
(Fig. 6c,e).

At TNF, the impacts of drier climates also depended on
tree size, with the largest trees experiencing losses, and smaller
individuals becoming more abundant. The average basal area
decreased with drier climates at TNF for all classes with DBH
≥ 10 cm, whereas subcanopy trees (35 ≤DBH < 55 cm) lost
87% of basal area between the wettest and the driest scenarios
in the evergreen case (Fig. 6d), and c. 55% loss in the
drought-deciduous case (Fig. 6f). Trees with DBH < 10 cm
increased basal area by 35% for the evergreen case (Fig. 6d),
although these trees remained little-affected (8% less basal
area) in the drought-deciduous case (Fig. 6e). Changes in the
forest structure resulted from general reduction of growth rates
among larger trees (Fig. S11d,f) and the increase in environ-
mentally determined mortality for all plant functional types
and DBH classes as the climate became drier, with increases
being more pronounced in the evergreen phenology case
(Fig. S12c–f). The highest community-level mortality rates
and lowest growth rates occurred when droughts lasted longer
than 20–50 months (Fig. S13c,d,g,h).

At TNF, reductions in both leaf-level gross primary productiv-
ity (33% or 0.7 kgCm�2 yr�1; Fig. S14a) and stomatal conduc-
tance (32% or 26 kg m�2 yr�1; Fig. S14b) for large trees caused
decreased growth and increased mortality. The response of large
trees to drier climate was dominated by additional water stress,
both below- and aboveground (Fig. S14c,d). By contrast, stom-
atal conductance and GPP for small trees increased as a result of
the loss of large trees that allowed more light to reach the

understory (Fig. S14b,e). Higher productivity resulted in higher
growth rates for small trees, which compensated for the increased
mortality rates caused by higher drought frequency (Fig. S12c–f).

Regional drought vulnerability

The results from simulations for the focal sites indicate that the
recurrence of year-long droughts is a strong predictor of biomass
loss in tropical forests (Fig. 5). Because the tropical plant functional
types in ED2 are not specifically developed for the study sites, and
the driving equations of the model rely on general principles of
ecosystem dynamics, we used this relationship between return
interval and biomass to explore and quantify the vulnerability of
different Amazon forest regions to changes in rainfall regimes, as
explained in the Materials and Methods section and Fig. 3.

The climatological annual evapotranspiration ET0 for the
Amazon was calculated from a 40-yr regional potential vegetation
simulation after the vegetation had reached equilibrium. The
basin-wide average ET0 (Fig. 7a) is 1160 mm yr�1, a value which
is close to the common assumption of 100 mm per month (e.g.
Malhi et al., 2009); ET0 also was assessed and found to be consis-
tent with both independent regional estimates and data from
eddy covariance towers (Notes S3; Longo, 2014). Importantly,
ET0 varies across the region, with the highest values at the
warmer regions at the forest-savanna transition, such as the arc
from Tocantins (TO) to El Beni (B) and Eastern Roraima (RR),
and the lowest values at the cooler regions such as the Andes
slopes, and high cloud-cover areas such as the western Amazonas
(AM) and the coast near the GYF site (Fig. 7a).

Fig. 3 Schematics of the method used in this study to quantify the Amazon forest proximity to critical rainfall regimes for each grid point. (a) Proximity
caused by a shift in the mean rainfall regime (dl); (b) proximity caused by a change in the inter-annual variability (dr). The remaining symbols are defined
as follows: pSN (lP; rP; cP) is the skew-normal distribution of annual rainfall P and characterized by the mean (lP), SD (rP) and skewness (cP); sc is the
critical return interval of year-long droughts; and Pc is the critical annual rainfall for year-long droughts and depends on the climatological
evapotranspiration ET0.
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In order to determine the dependence of critical annual precip-
itation (Pc) upon the climatological ET (ET0; Fig. 3), we calcu-
lated the ratio between ET0 and the total rainfall (calculated over

12-month periods) for every drought event on each grid cell that
occurred between 1969 and 2008. The ratio approached one for
droughts longer than 12 months (Fig. 7b), therefore we assumed

(a) (c)

(b) (d)

Fig. 4 Averaged aboveground biomass predicted by Ecosystem Demography Model version 2 (ED2 as a function of soil texture and rainfall scenario. (a)
Guyaflux (GYF), evergreen; (b) GYF, drought-deciduous; (c) Tapaj�os (TNF), evergreen; and (d) TNF, drought-deciduous. Colored points and solid lines
represent the mean of the 40-yr averages obtained for each realization, and the color-shaded region corresponds to the 2.5–97.5% quantile range of the
40-yr averages. HC corresponds to the simulation results when the model is driven by the observed historical rainfall regime (1972–2011); rainfall scenarios
(S) correspond to the shift of the annual rainfall distribution relative to the current climate; gray points and gray solid lines represent the mean annual
rainfall scenario and gray-shaded region represents the 2.5–97.5% quantile range of annual rainfall.
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Fig. 5 Average rate of change in aboveground biomass as a function of the mean return interval of year-long droughts. Each point represents one
simulation using (a) evergreen and (b) drought-deciduous phenology. Left axis shows the average rate of change in aboveground biomass (DAGB) and right
axis shows the equivalent DAGB for a 50-yr period. Colors/symbols represent soil texture, and bottom lines represent the range of the mean return interval
of year-long droughts (sD1) for each site. Thick color curves are the fitted curves for each soil texture, and dashed vertical lines are the critical return interval
sc for each soil texture. Dashed horizontal line is the critical biomass loss (Dc).
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Table 2 Fitted models of aboveground change rate as a function of drought recurrence

Soil texturea Phenologyb D0
c, d,e ac, d,f bc, d,f sc

d R2

LSa EGN �0.060 (0.007)* �2.17 (0.05) 2.76 (0.08) 1.870 (0.020) 0.91
DRD �0.055 (0.005)*** �0.964 (0.020) 1.99 (0.07) 1.574 (0.012) 0.95

SaCL EGN 0.065 (0.009)*** �2.98 (0.06) 2.64 (0.07) 2.18 (0.03) 0.91
DRD �0.065 (0.006)*** �1.068 (0.022) 1.85 (0.07) 1.745 (0.012) 0.96

CL EGN �0.068 (0.012)*** �3.97 (0.11) 2.64 (0.09) 2.44 (0.05) 0.90
DRD �0.069 (0.008)*** �1.363 (0.031) 1.84 (0.07) 2.010 (0.025) 0.90

CSa EGN �0.050 (0.030)* �4.54 (0.31) 1.58 (0.10) 4.69 (0.30) 0.65
DRD �0.073 (0.017)*** �2.05 (0.10) 1.24 (0.07) 3.96 (0.14) 0.74

C EGN �0.06 (0.06)– �12.3 (2.1) 1.74 (0.17) 7.3 (1.0) 0.40
DRD �0.08 (0.04)** �3.6 (0.4) 1.25 (0.12) 6.2 (0.4) 0.59

aSoil texture classes are loamy sand (LSa), sandy clay loam (SaCL), clay loam (CL), clayey sand (CSa) and clay (C).
bLeaf phenology are evergreen (EGN) and drought deciduous (DRD).
cCoefficients were obtained for each soil texture and leaf phenology (one point for each simulation), using Eqn 1.
dNumbers in parentheses are the SE.
e–,*,**, and *** represent D0 estimates that are statistically different from zero at the 0.1, 0.05, 0.01, and 0.001 confidence-levels, respectively.
fAll estimates are statistically significant at the 0.001 confidence-level.

(a) (c) (e)

(b) (d) (f)

Fig. 6 Average size- and plant functional type (PFT)-structure of basal area as functions of rainfall scenarios. (a, b) Guyaflux (GYF) (evergreen), (c, d)
Tapaj�os (TNF) (evergreen) and (e, f) TNF (drought-deciduous) for clayey sand simulations, disaggregated by (a, c, e) PFT and (b, d, f) size classes. Results
for GYF (drought-deciduous) were nearly identical to the evergreen case and thus are not shown; results for other soil texture types are presented in
Supporting Information Figs S9 and S10. Colored points and solid lines represent the mean of the 40-yr averages obtained for each realization, and the
shaded region corresponds to the 2.5–97.5% quantile range of the 40-yr averages. HC corresponds to the simulation results when the model is driven by
the observed historical rainfall regime (1972–2011); rainfall scenarios (S) correspond to the shift of the annual rainfall distribution relative to the current
climate; gray points and gray dashed lines represent the mean annual rainfall scenario and the gray-shaded region represents the 2.5–97.5% quantile
range of annual rainfall.
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ET0 to be a proxy for Pc. The critical return interval (sc) was
obtained directly from Table 2, using the most similar soil texture
for each grid cell and the values from drought deciduous phenol-
ogy for a more conservative estimate. The annual rainfall distri-
bution calculated for each gridded rainfall dataset is shown in
Notes S6.

Modest changes in the current rainfall regime could bring large
fractions of the Amazon to critically dry rainfall regimes accord-
ing to ED2. Nearly 23% of the Amazon region (1.8 million km2)
would experience return intervals of year-long droughts below sc
if the mean annual rainfall decreases, or if the standard deviation
of annual rainfall increases by more than twice the current stan-
dard deviations (Table 3). Regions where the two precariousness
metrics (Eqns 2, 3) indicated closeness to the threshold rainfall
regime (i.e. near-zero dl and dr) were mainly nonforested
regions, such as Delta Amacuro (Y), Bol�ıvar (F), El Beni (B),
Santa Cruz (S), Tocantins (TO), Maranh~ao (MA) and northern
Roraima (RR). Within the Amazon, the shortest distances by
shift in the mean annual rainfall (dl) occurred in four regions:
Northern Santa Cruz (S), Pando (N), Northern Ucayali (UCA)
and a large band from central Roraima (RR) to Eastern Par�a
(PA), hereafter the Central-Eastern Amazon (Fig. 8a). The short-
est distances associated with increased inter-annual variability in
rainfall (dr, Fig. 8b) could not be determined where the current
mean rainfall was very high because the maximum probability of
rainfall below Pc never reaches 1/sc, even if the standard deviation
of annual rainfall approaches infinity. However, widespread dr
values below 2 at some of the driest areas in Central-Eastern
Amazon, Northern Santa Cruz (S) and Pando (N) suggest that
these regions could experience aboveground biomass loss through
increased inter-annual variability, even if average annual rainfall
remains similar. The results also indicate that a large area in

Southern Par�a (dashed blue area in Fig. 8) would require major
changes in rainfall to reach the critical rainfall, despite being close
to the forest–savanna transition zone and not particularly wet.
The high distance metrics result from a combination of lower ET
associated with moderate altitudes (250–400 m above sea level)
and cooler temperatures, and low rainfall inter-annual variability,
particularly in the PGMF dataset.

The bias-corrected CMIP5 (RCP8.5) rainfall projections sug-
gest that at least 90% (fRCP8.5 < 10%) of the models agree that
three quarters of the Amazon (5.9 million km2) would not reach
the ED2-derived definition of critically dry rainfall. By contrast,
only 4% of the region (0.3 million km2) had the majority of the
models (fRCP8.5 > 50%) predicting such critically dry conditions
by the late 21st century (Table 3). For nearly one-fifth of the
Amazon area (1.6 million km2), between 10 and 50% of the
models predicted that the return interval of year-long droughts
would be shorter than sc (critically dry): these areas included
Northern Santa Cruz and the Central-Eastern Amazon (Table 3;
Fig. 8c). In addition, 15–30% of the models also indicate that
extreme droughts would become critically recurrent in Suriname,
even though dl and dr are not close to zero. Conversely,
fRCP8.5 < 5% at Pando (N) despite the area showing low values
for both distance metrics, because most models predicted increase
in rainfall over that region.

Discussion

Site-level simulations

Impact of drought recurrence on biomass and ecosystem
function In the present paper we explored the Amazon forest’s
vulnerability to changes in rainfall regime using a process-based

(b)(a)

Fig. 7 Climatological evapotranspiration map and ratio between long-term evaporation and rainfall as a function of drought duration. (a) Average of
climatological annual evapotranspiration (ET0) simulated by ED2, using the last 40 yr of the 1500–2008 potential vegetation simulation. Brazilian States:
Amazonas (AM), Roraima (RR), Par�a (PA), Maranh~ao (MA), Tocantins (TO); Bolivian Departments: Santa Cruz (S), El Beni (B), Pando (N); Peruvian
Regions: Ucayali (UCA); Venezuelan States: Bol�ıvar (F), Delta Amacuro (Y). (b) Box plots of the ratio between long-term mean evapotranspiration and
rainfall over the previous 12months or entire drought duration for droughts that lasted longer than 12months, as a function of drought length for all
droughts reported in the Amazon grid; boxes span through the interquartile range, whiskers extend to 1.5 times the interquartile range, and horizontal
lines inside boxes correspond to the median; the horizontal grid line corresponding to the ratio equal to 1 is shown for reference. Box plots separated by soil
texture are shown in Supporting Information Fig. S15.
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model (ED2, Ecosystem Demography Model version 2) in which
the ecosystem’s response to droughts reflect the ensemble
response of individual plants of different sizes and functional
types living in a variety of within-canopy micro-environments.

High-rainfall areas, such as Paracou, are predicted to be insensi-
tive to moderately drier rainfall regimes (i.e. have low precarious-
ness; Figs 4–6, S7): the typical wet season provides sufficient
rainfall to recharge soils, and the drier scenarios simply reduce

Table 3 Summary of the distance from critical rainfall regimesa and fraction of climate projections predicting critically dry regimesa

dl
b,d dr

c,d fRCP8.5
e

Range 103 km2 % Range 103 km2 % Range 103 km2 %

< 0.0 96.4 1.2 < 0.0 449 5.7 > 70 170 2.2
0.0–1.0 763 9.7 0.0–1.0 752 9.5 50–70 170 2.2
1.0–2.0 973 12.3 1.0–2.0 648 8.2 30–50 364 4.6
2.0–3.0 1369 17.4 2.0–3.0 575 7.3 10–30 1246 15.8
≥ 3.0 4683 59.4 ≥ 3.0 5462 69.3 ≤ 10 5935 75.3

aCritically dry regimes were defined based on ED2 results (Table 2; Fig. 5).
bdl is the reduction in mean annual rainfall to make the return interval of year-long droughts shorter than the critical return interval (sc).
cdr is the increase in standard deviation of annual rainfall to make the return interval of year-long droughts shorter than sc.
dBoth dl and dr were calculated by applying Eqns 2 and 3. The value presented is the weighted average of six rainfall datasets (Supporting Information
Notes S4).
efRCP8.5 is the fraction of bias-corrected CMIP5 models predicting that the return interval of year-long droughts would be shorter than sc by the end of the
21st century.

(a)

(b) (c)

(%)

Fig. 8 Regional maps of distance from critical rainfall regimes and fraction of climate projections predicting critically dry regimes. Critically dry regimes are
defined based on ED2 predictions of aboveground biomass loss when driven with early 21st century atmospheric CO2 (see Table 2 and Fig. 5). (a) Reduction
in mean annual rainfall (dl) and (b) increase in standard deviation of annual rainfall (dr) needed to make the return interval of year-long droughts shorter
than the critical return interval (sc). Metrics dl and dr were calculated by applying Eqns 2 and 3 to six rainfall datasets and averaging them (Supporting
Information Notes S6). Color intensities were truncated at 3 for clarity. Gray areas correspond to regions where no solution could be found (see main text).
(c) Fraction of bias-corrected CMIP5 models predicting that the return interval of year-long droughts would be less than sc by the end of the 21st century
under the high-emission (RCP8.5) scenario (fRCP8.5). Brazilian States: Amazonas (AM), Roraima (RR), Par�a (PA), Maranh~ao (MA), Tocantins (TO); Bolivian
Departments: Santa Cruz (S), El Beni (B), Pando (N); Peruvian Regions: Ucayali (UCA); Venezuelan States: Bol�ıvar (F), Delta Amacuro (Y). The rectangle in
Southern Par�a corresponds to the area with high dl and dr (low precariousness) described in the ‘Regional drought vulnerability‘ section.
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water losses through runoff (Fig. S16), with minimal effects on
water stress, and changes in biomass (Fig. 4), forest structure
(Fig. 6) and evapotranspiration (Fig. S7). By contrast, drier
forests, like the Tapaj�os, are less resilient (i.e. have high precari-
ousness), and become severely water-limited, lose aboveground
biomass and experience reductions in evapotranspiration under
scenarios with S =�0.6 and drier (15% reduction in mean
annual rainfall, to c. 1500 mm; Figs 4–6, S7). Our results suggest
that historical El Ni~no-related droughts at the Tapaj�os (1991–
1993, 1997–1998 and 2015–2016) were sufficiently strong to
cause biomass loss, consistent with observational studies con-
ducted in the early 2000s, which found that forests were recover-
ing from a recent mortality event (Rice et al., 2004; Pyle et al.,
2008), and a recent study that reported increased canopy
turnover during the 2015–2016 drought (Leitold et al., 2018).
According to ED2 results, high-rainfall periods, akin to the typi-
cal wet season in Paracou, could reduce the impacts of strong
droughts (Fig. S16). Over the past decades, extreme drought and
extreme flood events have become increasingly common (e.g.
Lewis et al., 2011; Marengo et al., 2012; Gloor et al., 2013; Feld-
pausch et al., 2016); however, extreme high-rainfall events have
been mostly concentrated in the already wet northwestern areas
(Gloor et al., 2013), and thus have had limited impact on
drought mitigation.

In drier forests such as Tapaj�os, canopy phenology is an
important determinant of a forest’s ecosystem sensitivity to
droughts (Figs 4–6). The tropical leaf phenology scheme in ED2
assumes that evergreen trees utilize stored carbon to maintain
their living tissues and maintain growth even during droughts,
whereas drought-deciduous trees drop leaves and stop tissue
growth when water-stressed (Notes S2). These different strategies
are plausible hypotheses for how evergreen and drought-
deciduous trees change their resource allocation during periods of
water stress; however, Doughty et al. (2015) suggested that trees
reduce maintenance of living tissues, while continuing to grow
during droughts. Such a strategy would possibly result in
responses to droughts that are intermediate between the existing
evergreen and drought-deciduous formulations in ED2.
Improved understanding of the environmental determinants of
plant-level carbon allocation within Amazon forest trees is an
important topic for future empirical studies (Comita & Engel-
brecht, 2014; Wu et al., 2016; Restrepo-Coupe et al., 2017).

Impacts of soil hydraulic properties on the dynamics of biomass
loss We found that, for a given rainfall regime, forests on
sandier soils were more resilient (Figs 4, 5). This outcome results
from clay particles being smaller and more compact; conse-
quently, they bind water more strongly, bringing soils to the wilt-
ing point and water-stressed conditions more quickly (Longo,
2014; Levine et al., 2016). This result may appear surprising
because white sand forests in the Amazon have lower biomass
and lower biodiversity, and white sand plant communities often
show drought adaptations (Anderson, 1981; Jirka et al., 2007;
Saatchi et al., 2011). However, in our simulations, soil texture
only affected hydraulic parameters; in reality, higher sand content
is usually associated also with lower nutrient availability,

shallower soils, and toxic aluminum concentrations (Laurance
et al., 1999; Fine et al., 2006; Jim�enez et al., 2009). Moreover,
the soil hydraulic parameterization used in ED2 is based on
Cosby et al. (1984), which tends to overestimate the compactness
of soils in the Amazon (Marthews et al., 2014), and are not suit-
able for representing clay-rich soils. Although we restricted simu-
lations to a maximum of 60% clay to conform with the range of
data used by Cosby et al. (1984), the current parameterization
does not account for diversity in soil organic carbon content and
pore-size distributions. Nevertheless, our results imply that differ-
ences in soil hydraulic properties will mediate the Amazon
ecosystem responses to changing rainfall regimes. As noted by
Levine et al. (2016), it is critical to improve the mechanistic
understanding of drought responses in different soil types, with
modeling and field-based research to quantify the relative impor-
tance of soil hydraulic properties, soil nutrient content and
drainage characteristics to the forest dynamics under future cli-
mate conditions.

Impacts of climate variability on change of forest structure and
composition Our results indicate that large trees were more
severely impacted by extreme droughts (Fig. 6d,f), in agreement
with both experimental rain-out studies (Nepstad et al., 2007; da
Costa et al., 2010) and pan-tropical observational studies
(Phillips et al., 2010). The simulated loss of canopy trees
occurred because these trees are not light-limited, therefore addi-
tional light absorption did not increase productivity; instead, it
caused higher respiration rates due to warmer leaves, and
increased leaf vapor pressure deficit (LVPD). Conversely, the
upper canopy losses improved light availability at the understory,
causing small trees to proliferate (Figs 6, S5). It is important to
point out that the simulated drought-driven mortality is entirely
dependent on carbon balance. Additional mechanisms such as
fire (Brando et al., 2014) and hydraulic failure (Rowland et al.,
2015) could increase mortality at shorter time scales than carbon
starvation only, and thus make forests even more susceptible to
recurrent droughts.

Ecosystem transpiration rates affected competition for water
between small and large individuals, leading to significant fluctu-
ations of carbon balance during drought events (Fig. S17a).
When deep soil layers, accessible only to tall trees, were already
dry after long droughts (e.g. near simulation years 37–41 in
Fig. S17b), having deep roots became less advantageous because
the limited water supply is extracted from upper layers (accessible
to all individuals) and transpired before it reaches deeper layers.
In such situations, limited water supply strongly affects tall trees,
because they demand more water, and experience higher temper-
atures and higher LVPD (Markewitz et al., 2010; Ivanov et al.,
2012). The resulting water limitation, combined with higher car-
bon demand, significantly reduces the carbon balance among
larger trees (Fig. S17a), which increases mortality and reduces
growth (Fig. S13).

Differential responses within the canopy to the drier climate at
Tapaj�os also depended on plant functional type composition
(Fig. 6c,e). Water stress reduced productivity and severely
impacted early successional trees because of their higher turnover
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rates of leaves and fine roots (Reich et al., 1997). By contrast,
mid-successional trees with lower maintenance costs benefitted
from the decline in early-successional trees. More generally, these
results illustrate how Amazon forest canopies may respond to
drier climates through changes in their size structure and plant
functional type composition. This ability to reorganize canopy
structure and composition in response to changes in precipitation
regimes can increase the ecosystem adaptability, resulting in more
gradual responses to climate changes than what would be
obtained with ‘big-leaf’ representations of the ecosystem (see also
Levine et al., 2016; Sakschewski et al., 2016).

Regional patterns of vulnerability

The predicted responses of the Amazon forests to drier rainfall
regimes show significant biomass loss once the return interval of
year-long droughts is < 2–7 yr (Fig. 5). The modeled critical
return interval marginally overlaps with previous estimates and
with typical drought recovery time in the Amazon (Hutyra et al.,
2005; Schwalm et al., 2017), but also suggests that some forests
could be even more vulnerable depending on biotic and abiotic
controls, such as leaf phenology and soil hydraulic properties
(Fig. 5). The ED2 simulations suggest that when the interval
between droughts is too short, forest productivity during non-
drought periods is insufficient to adequately recover the drought-
driven biomass losses (Fig. S8). Similar to Feldpausch et al.
(2016), we found that time since last severe drought explained
< 3% of the variance in simulated net biomass change and pro-
ductivity (Fig. S18), highlighting that simulated biomass losses
do not result from the cumulative effects of extreme droughts on
demographic rates.

A direct, regional evaluation of the Amazon response to differ-
ent rainfall regimes at 1° resolution and using the same method-
ology used for the study sites was not computationally feasible, as
it would require over 900 000 simulations. However, the ED2
model formulation used in this study has regional applicability
(see also Zhang et al., 2015; Levine et al., 2016), making it possi-
ble to extrapolate the Paracou and Tapaj�os findings to whole
Amazon biome scale, and thus to infer the regional risk of above-
ground biomass (AGB) loss and accompanying changes of forest
structure and composition due to changes in the rainfall.

Using the ED2-derived definition of critically dry regimes,
substantial portions of the Central-Eastern Amazon are predicted
to experience frequent extreme droughts and resulting biomass
losses with either modest reductions in the mean rainfall or
minor increases in the inter-annual variability (Fig. 8a,b). This
region has been previously reported as vulnerable (e.g. Hutyra
et al., 2005; Hirota et al., 2011; Anad�on et al., 2014), and 15–
30% of the bias-corrected CMIP5–RCP8.5 models indicate that
the region could reach the critically dry regime threshold by 2100
(Fig. 8c; see also Duffy et al., 2015). Areas in Southwestern Ama-
zon – Santa Cruz and Pando (Bolivia) and Ucayali (Peru) – are
likewise near the critically dry rainfall regime, and have shown
drying trends (Fu et al., 2013; Gloor et al., 2015), although most
bias-corrected CMIP5-RCP8.5 projections suggest that the
Pando would become wetter (Fig. 8c).

By contrast, Amazon areas along the Atlantic coast and in the
Western region would require dramatic changes in their rainfall
regimes before reaching the critically dry threshold (Fig. 8a,b).
Nonetheless, 15–30% of the CMIP5 model projections indicate
that Suriname could experience such dramatic change in rainfall
(Fig. 8c). Interestingly, our analysis also indicates that forests in
Southern Par�a, Brazil (dashed area in Fig. 8a,b) are likely to be
far from the critically dry threshold, despite their relatively low
annual rainfall and being close to the forest–savanna transition
zone. The higher resilience (low precariousness) of these regions
arises from a combination of low inter-annual rainfall variability
and lower evapotranspiration rates arising from the higher eleva-
tion and associated lower temperatures.

One limitation of our analysis is that it does not account for
regional variation in traits: plants in drier parts of the Amazon
may be more adapted and less vulnerable to droughts (Esquivel-
Muelbert et al., 2017). However, in case changes in the rainfall
regime are rapid, their adaptation may be limited and insufficient
to prevent major changes in carbon stocks and forest structure
and composition (Allen et al., 2015).

It is important to note that the model predictions that parts of
the Amazon could reach critically dry regimes (Fig. 8) are contin-
gent on the accuracy of the rainfall datasets and other climatic
variables (temperature, radiation, humidity) used in the model
simulations and subsequent analyses. Also, the coarse resolution
(25–250 km) of the datasets means that local-scale topography
and distance from large rivers, both known to affect the distribu-
tion of total annual rainfall (Fitzjarrald et al., 2008), cannot be
fully characterized. Moreover, in many of the areas identified
above as either vulnerable or resilient, limited in-situ ecological
and long-term meteorological observations are available
(Fig. S6); measurements in these areas should be prioritized in
future studies.

Impacts of elevated CO2 on forest response to drier
regimes

The forest responses predicted by ED2 emerged as a consequence
of declining water availability. However, increasing atmospheric
CO2 also is likely to change the future functioning of forests
(Rammig et al., 2010; Cox et al., 2013; Huntingford et al., 2013;
Zhang et al., 2015). To explore the interactions between atmo-
spheric CO2 and rainfall regime, we performed 2880 additional
simulations for the two study sites with the same characteristics
described in the Methods section, with the exception of elevated
atmospheric CO2 concentrations (758 ppm), corresponding to
the 2060–2099 average from CMIP5-RCP8.5 scenario (Mein-
shausen et al., 2011).

Elevated-CO2 simulations showed substantial biomass accu-
mulation at both sites (5–60% compared to present-day biomass,
Fig. 9), consistent with previous modeling studies that found that
elevated CO2 could offset deleterious effects of drier climate due
to increased water-use efficiency (Cox et al., 2013; Huntingford
et al., 2013; Farrior et al., 2015; Zhang et al., 2015). Nonetheless,
the driest scenarios at Tapaj�os National Forest (TNF) (S =�1.6,
or 39% reduction of mean annual rainfall) showed 10–38%
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depletion in AGB when compared to present-day rainfall regimes
(S = 0) and elevated CO2 (Fig. 9c,d), as a consequence of
increased water stress. Moreover, extreme drought recurrence
(sD1 < 3 yr) reduced the rate of biomass accumulation by over
30% in 50 yr, relative to the elevated-CO2, present-day rainfall
regime (Fig. S19).

At the leaf level, high CO2 increases photosynthetic activity
through reduction of photorespiration, and reduces stomatal con-
ductance and thus leaf-level water demand (Cernusak et al.,
2013). At the stand level, water demand also depends on changes
in leaf area, which could compensate the higher water-use effi-
ciency at leaf level (W€urth et al., 1998). In ED2 and under no
water limitation, increased water-use efficiency was the dominant
effect, reducing evapotranspiration by 8–10% in Guyaflux tower
(GYF) (e.g. Fig. S20a,b). Conversely, evapotranspiration became
similar to nonelevated CO2 for the driest scenarios and clayey
soils in TNF, indicating severe water limitation (Fig. S20c,d).

Although elevated-CO2 simulations suggested a strong
response of the forest and significant biomass accumulation
(5–60% compared to present-day biomass), they likely overesti-
mate the CO2 fertilization effect. Previous model comparison
studies showed that ED2 response to elevated CO2 is strong

compared to other dynamic global vegetation models (Zhang
et al., 2015; Castanho et al., 2016). Moreover, ED2 does not
account for nutrient limitation such as phosphorous on photo-
synthesis in tropical forests (Santiago & Goldstein, 2016; Yang
et al., 2016). Furthermore, some studies suggest that carbon sinks
by tropical forests are not becoming stronger carbon sinks as
CO2 increases (Clark et al., 2013; Brienen et al., 2015) and
warmer temperatures may exacerbate the impacts of low rainfall
during severe droughts (Allen et al., 2015). The complex mecha-
nisms that drive tropical forest dynamics under CO2-rich,
warmer, drier and nutrient-limited environments are still poorly
understood, and efforts such as implementing a Free Air CO2

Enrichment (FACE) experiment in the Amazon (Norby et al.,
2016) could provide much-needed data and significantly con-
tribute to reduce uncertainties.

Concluding remarks and research priorities

Our analysis of regional ecosystem distance from critical rainfall
regime presented here moves beyond prior studies (e.g. Hutyra
et al., 2005; Lapola et al., 2009; Salazar & Nobre, 2010; Hirota
et al., 2011; Cox et al., 2013) in three important respects. The

(
)

)
(

(a) (b)

(d)(c)

Fig. 9 Response of aboveground biomass predicted by ED2 under early and late 21st century atmospheric CO2. (a) Guyaflux (GYF), evergreen; (b) GYF,
drought-deciduous; (c) Tapaj�os (TNF), evergreen; and (d) TNF, drought-deciduous. Solid lines represent response using early 21st century atmospheric
CO2 (378 ppm), and dashed lines correspond to results under late 21st century atmospheric CO2 under the high-emission scenario (758 ppm). Points
represent the mean of the 40-yr averages obtained for each realization, and the shaded region corresponds to the 2.5–97.5% quantile range of the 40-yr
averages. HC corresponds to the simulation results when the model is driven by the observed historical rainfall regime (1972–2011); rainfall scenarios (S)
correspond to the shift of the annual rainfall distribution relative to the current climate; gray points and gray dotted lines represent the mean annual rainfall
scenario and the gray-shaded region represents the 2.5–97.5% quantile range of annual rainfall.
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analysis incorporates the effects arising from spatial variation in
climate regimes and soil texture and differences in historical pat-
terns of inter- and intra-annual variability that are key determi-
nants of ecological dynamics (Zimmermann et al., 2009; Reyer
et al., 2013). The predicted responses combine the ecological
effects of size structure and competition for limiting resources
between individuals of different plant functional types that affect
ecosystem resilience (Levine et al., 2016). We estimated forest
vulnerability to drought based on continuous ecological variables
such as community composition and biomass loss, as opposed to
categorical distribution of biomes.

Additional mechanisms not included in our study are likely to
contribute to the community response to changing and novel cli-
mates, and should be further investigated. First, there are still
large uncertainties on many ecosystem parameters represented in
the model (e.g. Fisher et al., 2010). Also, leaf and stem hydraulic
traits that drive drought tolerance (Mar�echaux et al., 2015; Row-
land et al., 2015; Powell et al., 2017) were not directly incorpo-
rated in this version of ED2. A mechanistic plant hydraulics
model has been recently implemented in ED2 (Xu et al., 2016)
and improved the ecosystem dynamics representation in Central
America, although it has not been evaluated for the Amazon and
does not represent hydraulic failure mortality. Additionally,
drought-related mortality can result from other mechanisms,
such as desiccation, reduced pest defense mechanisms and fires
(van der Molen et al., 2011; Brando et al., 2014; McDowell et al.,
2018), which may further reduce the forest resistance to
droughts. Also, the model results could only be evaluated against
historical and present-day CO2 concentrations (Notes S3), such
that high-CO2 simulations are unconstrained by observations; to
answer the question of whether or not CO2 fertilization will off-
set water limitation, the larger uncertainty of increasing CO2,
including the interactions between CO2 fertilization and nutrient
limitation, must first be addressed. Furthermore, changes in cli-
mate and in the plant community dynamics are highly interac-
tive. Representing these interactions in Earth System Models
requires ecosystem models that go beyond overly aggregated
(‘big-leaf’) approaches. Previous multi-year studies have success-
fully integrated ED2 with regional atmospheric models at
regional scales (e.g. Knox et al., 2015; Swann et al., 2015), and
expanding the integration to the global scale is feasible, although
it will also require reducing biases in climate projections
(Ahlstr€om et al., 2017b).

In summary, our results highlight the importance of including
ecosystem structure and composition in model predictions of
future climate. For example, the loss of large resource-demanding,
drought-intolerant trees in the most extreme drought scenarios
also increased the light availability and thus reduced the impact of
droughts on the understory. Representing changes in micro-
environments experienced by individuals in an ecosystem is fun-
damental to understand the ecosystem dynamics under drought
conditions, although it is fundamental to constrain and improve
how plants with varying size and different life strategies access and
compete for limiting resources such as water and light (Fisher
et al., 2018). Also, even though it is limited to one aspect of cli-
mate change and one ecosystem, our study shows that changes in

the interannual variability such as the frequency of extreme
events, are likely to drive the fate of ecosystems as the climate
changes.
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